0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какая должна быть толщина стен в деревянном доме

Поговорка гласит: мой дом – моя крепость. Чтобы чувствовать себя в доме защищенно, нужно позаботиться о прочном фундаменте, о надежной крыше над головой и о теплых стенах. А какой толщины должна быть стена дома и утеплитель, чтобы враг в виде холода не проник в вашу крепость? Об этом мы сейчас и расскажем на примере теплотехнического расчета наружной стены дома из бруса с облицовкой в виде кирпича и минераловатным утеплителем.

У нас вы можете заказать строительство дома из бревна или бруса под ключ.

Подставляя свои исходные данные в расчет, вы сможете самостоятельно произвести все необходимые вычисления и сделать выводы о том, насколько эффективен будет предполагаемый вами способ утепления.

Расчет мы будем производить с учетом требований СП 50.13330.2012, СП 131.13330.2012, СП 23-101-2004.

Итак, что мы имеем:

  • район строительства: Москва
  • относительная влажность воздуха внутри дома (φв) – 55%
  • оптимальная температура воздуха внутри дома (tв) – 20 °C

Открываем СП 50.13330.2012 (табл.1) и видим, что при таких исходных данных влажностный режим помещения считается нормальным.

Далее определяем по формуле из этого документа Rотр – базовое значение сопротивления теплопередаче:

Для наружных стен жилого дома коэффициент а (по табл.3 СП 50.13330.2012) равен 0,00035, коэффициент b равен 1,4.

ГСОП – градусо-сутки отопительного периода вычисляем по формуле:

Согласно исходным данным, tв = 20 °С

tот – средняя температура наружного воздуха (СП131.13330.2012, табл.1) для периода с температурой не выше 8 °С.

zот – продолжительность отопительного периода в сутках (СП131.13330.2012, табл.1) для периода с температурой не выше 8 °С.

Получаем ГСОП = (20-(-2.2))*205 = 4551 °С·сут

Подставляем все данные в формулу определения Roтр

Мы получили нормируемое значение сопротивления теплопередаче стен.

Теперь вычисляем значение Rфакт для конкретной стены. Оно должно быть равно этому значению или превышать его (Rфакт > Rнорм).

Записываем слои «пирога» с толщиной каждого слоя (δ) и с коэффициентом его теплопроводности (λ):

  1. кирпичная кладка (δ1=0.12м, λ1=0.58Вт/м°С);
  2. воздушная прослойка 3 см (δ2=0.03м, λ2=0.16Вт/м°С);
  3. минераловатный утеплитель (δ3=0,07, λ3=0.04Вт/м°С);
  4. деревянный брус (δ4=0.18м, λ4=0.18Вт/м°С);
  5. слой штукатурки 2 см (δ5=0.02м, λ5=0.21Вт/м°С).

Чтобы определить условное сопротивление теплопередаче, подставляем данные в формулу (СП 50.13330.2012):

Rint=1/aint, где аint — коэффициент теплоотдачи для наружных стен, по СП 50.13330.2012 (табл.4) он равен 8,7 Вт/м²°С

Rext =1/аext — коэффициент теплоотдачи для наружных стен в зимний период, по СП 50.13330.2012 (табл.6) он равен 23 Вт/м²°С

Rn=R1+R2+R3+R4+R5 (сумма всех слоев «пирога») =δ1/λ1+δ2/λ2+δ3/λ3+δ4/λ4+δ5/λ5

Подставляем все данные в формулу и считаем:

Фактическое сопротивление теплопередаче определяем по формуле:

Rфакт=Rусл *k, где k – коэффициент теплотехнической однородности наружной стены

В результате получаем:

Поскольку полученная величина сопротивления теплопередаче больше, чем требуемая (3.13>2.99), значит стена с предполагаемым «пирогом» и толщиной утеплителя в 7 см полностью соответствуют требованиям по теплопередаче.

Такой пример теплотехнического расчета наружной стены позволяет определить и общую толщину ограждающей конструкции: δ1+δ2+δ3+δ4+δ5=12+3+7+18+2=42 см

1-кирпичная кладка; 2-воздушная прослойка; 3-минераловатный утеплитель; 4-деревянный брус; 5-слой штукатурки;

Теплотехнический расчет наружной стены онлайн-калькулятор

Если все эти формулы для вас темный лес, то можно воспользоваться онлайн-калькулятором. Выбрав исходные данные (город, температурный режим, влажность, конструкция стены) и подставив их в вычислительную программу, вы получите итоговый результат теплоизоляции ограждающих конструкций. Теплотехнический расчет наружной стены онлайн-калькулятор сделать просто, скопируйте ссылку в свой браузер http://rascheta.net/

Надеемся, изучение данной статьи было для вас полезным, и теперь вы сможете сами произвести теплотехнический расчет, онлайн-калькулятор вам в этом поможет. Делитесь ссылкой на статью со своими друзьями в социальных сетях, рассказывайте блоге и пишите комментарии. А также вступайте в нашу группу В Контакте.

Уважаемые заказчики!

На всю продукцию компании предоставляется гарантия 5 лет.

Приём заказов и запись на консультацию осуществляется:
ПН-ПТ: с 9:00 до 21:00
СБ: с 10.00 до 18.00
ВС: выходной день

Телефон: +7 (919)-194-66-66

Расчет толщины утеплителя СП

В нормативных документах по строительной теплофизике (СНиП «Строительная теплотехника», «Тепловая защита зданий») традиционно содержался раздел по ограничению влагонакопления внутри ограждающих конструкций [1, 4]. Основу данного раздела составляли исследования, проведенные в НИИСФ РААСН в 60-х гг. прошлого века. В последнее время, в связи с появлением конструкций с повышенными теплозащитными свойствами, появилась необходимость модернизации метода расчета, содержащегося в этом разделе [5, 7]. При проведении актуализации СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003» было внесено изменение в методику расчета «Защиты от переувлажнения ограждающих конструкций». Изменение касается уточнения расположения плоскости максимального увлажнения в конструкции, относительно которой из уравнений баланса влаги проверяется необходимость устройства дополнительной пароизоляции в конструкции. С 1 июля 2015 г. СП 50.13330.2012 стал обязательным. В настоящее время проводится его активное применение при проектировании ограждающих конструкций. Накопленный опыт этого применения позволит провести дальнейшее усовершенствование этого СП. Настоящая статья посвящена описанию опыта применения метода нахождения расположения плоскости максимального увлажнения в стеновых ограждающих конструкциях с фасадными теплоизоляционными системами с тонким штукатурным слоем. Для автоматизации данной задачи произведена разработка программы в среде Microsoft Excel. Были определены входные данные, разработан алгоритм расчета, использовались климатические данные для г. Москвы и характеристики материалов (плотность, теплопроводность, паропроницаемость), представленные в Приложении Т СП 50.13330.2012. Для определения значений комплекса fi (t м.у) при промежуточных показаниях температуры проводилась линейная интерполяция и экстраполяция. Был расширен диапазон температур, для которого вычислялся комплекс от –40 °С до +45 °С.

Исследуемые конструкции

Ограждающие конструкции с фасадными теплоизоляционными системами с тонким штукатурным слоем представляют собой конструкции стен, выполненных из монолитного бетона или кладок из мелкоштучных изделий (газобетонных блоков, кирпичей и т. д.), утепленных с наружной стороны слоем теплоизоляционного материала, который защищен от внешних климатических воздействий тонким (до 5 мм) слоем штукатурки, нанесенной по стеклосетке. Данные конструкции обладают достаточно высоким значением приведенного сопротивления теплопередаче, обусловленным малым количеством теплопроводных включений. В качестве материала теплоизоляционного слоя применяются плиты из минеральной ваты или пенополистирола, в том числе экструдированного.

Расчеты были проведены для конструкций с основанием из газобетона толщиной 0,3 м и силикатного кирпича толщиной 0,38 м. При исследовании были зафиксированы характеристики слоёв 1, 2 и 4. Характеристики (толщина, плотность, теплопроводность, паропроницаемость) слоя утеплителя 3 менялись (рис. 1). После каждого изменения фиксировалось положение плоскости максимального увлажнения. Таким образом был произведён расчёт определения плоскости максимального увлажнения каждого основания с тридцатью различными вариантами утеплителя.

Конструкция исследуемой стены: 1 – цементно-песчаный раствор; 2 – основание конструкции; 3 – утеплитель; 4 – наружный тонкий штукатурный слой

Методика расчета

Для каждого слоя многослойной ограждающей конструкции вычисляется значение комплекса fi (t м.у), характеризующего температуру в плоскости максимального увлажнения:

По полученным значениям комплекса fi (t м.у) по табл. 11 СП 50.13330.2012 «Тепловая защита зданий» определяется значение для каждого слоя многослойной конструкции. Затем рассчитываются значения t м.у исходя из линейного распределения температур по сечению ограждающей конструкции в плоскостях сопряжения слоев материалов конструкции «при средней температуре наружного воздуха периода с отрицательными среднемесячными температурами». По этим значениям и по значению возможной температуры в плоскости максимального увлажнения, t м.у, определяется слой материала конструкции, в котором находится плоскость максимального увлажнения, и определяется ее координата хм.у.

Данный метод обоснован теоретическими положениями теории потенциала влажности [2, 6]. Табл. 11 из СП рассчитана [2].

Результаты расчетов

На основании анализа проведённых вычислений установлены три принципиально разных варианта расположения плоскости максимального увлажнения в толще ограждающей конструкции. Каждая модель поведения присуща своей конструкции.

Результаты расчетов сведены в таблицу.

1. Конструкция с основанием из кладки из газобетонных блоков. Толщина теплоизоляционного слоя варьировалась от 0,1 до 0,5 м.

Для утеплителей из пенополистирола и экструдированного пенополистирола получено, что в независимости от сочетания теплофизических характеристик утеплителя и основания плоскость максимального увлажнения находится всегда в слое утеплителя.

Для утеплителя из плит минераловатных получено, что плоскость максимального увлажнения при малых толщинах слоя утеплителя приходится на стык слоёв утеплителя и наружного тонкого штукатурного слоя. Однако при достижении толщины утеплителя 37 см плоскость максимального увлажнения смещается в основание конструкции и остаётся там при дальнейшем увеличении толщины, таким образом, проявляется эффект «переутепления» конструкции.

2. Конструкция с основанием из кладки из силикатного кирпича. Толщина теплоизоляционного слоя варьировалась от 0,1 до 0,5 м.

Для утеплителей из пенополистирола, экструдированного пенополистирола и плит минераловатных получено, что плоскость максимального увлажнения всегда находится в слое сопряжения утеплителя и наружного тонкого штукатурного слоя вне зависимости от плотности и толщины слоя минеральной ваты. Конструкции с основанием из кладки из силикатного кирпича не подвержены ни переутеплению, ни смещению плоскости максимального увлажнения в утеплитель.

Читать еще:  Как утеплить пол с линолеумом

Физическое обоснование «эффекта переутепления» ограждающих конструкций

«Эффект переутепления» объясняется тем, что при увеличении толщины утеплителя градиент давления падает, и его становится недостаточно, что- бы перенести влагу сквозь слой утеплителя. Поэтому влага до утепления, скапливающаяся в слое сопряжения утеплителя и наружного тонкого штукатурного слоя, начинает выпадать в основание конструкции.

Выводы

Основным выводом из настоящей работы является то, что при увеличении толщины утеплителя происходит «эффект переутепления». Эффект наблюдался при толщине минеральной ваты 0,37 м и более. Опасность этого явления состоит в том, что даже в случае выполнения условий СНиП 50.13330.2012 всё равно в газобетонных блоках будет наблюдаться максимальная влажность, следовательно, снижение долговечности ограждающей конструкции.

Какая влажность будет достигнута в данном слое, а также способы борьбы с ней предстоит выяснить в дальнейших исследованиях.

Заключение

Как видно из вышеприведённого исследования, увеличение толщины утеплителя в некоторых случаях приводит к «эффекту переутепления» ограждающих конструкций.

Конечно же, в современных конструкциях утеплитель толщиной 37 см и более сейчас практически не применяется. Однако на сегодняшний день, во-первых, постоянно возрастают требования к снижению энергопотребления и увеличению приведенного сопротивления теплопередачи здания, что будет приводить к увеличению слоя тепловой изоляции. Во-вторых, производится строительство уникальных объектов, имеющих достаточно большую толщину утеплителя. В-третьих, происходит разработка новых строительных материалов, которые в корне изменяют влажностный режим ограждений. Примером такого материала может служить тонкий штукатурный слой. Наконец, в Европе активно ведётся строительство домов типа «passive house», имеющих толщину утеплителя из минераловатных плит 40–50 см. Естественно, такого рода технологии необходимо адаптировать под суровые климатические условия России. Поэтому при проектировании обязательны грамотные и обоснованные расчёты защиты от переувлажнения ограждающих конструкций.

Полученные данные соответствуют результатам исследований зарубежных специалистов, которые производились средствами немецкой программы WUFI 5.0 [8–10]. Учёные Olof Hagersedt и Lars-Erik Harderup изучали новые пассивные деревянные дома, построенные в Швеции. Они отмечали, что при увеличении толщины стены наряду с положительным эффектом снижения энергопотребления наблюдалась большая подверженность новых домов влажности [3].

Разумеется, применение новых более совершенных строительных материалов в строительстве необходимо, но при этом обязателен более точный расчёт влажностного режима здания, максимально полно учитывающий физические процессы, происходящие в толще ограждающих конструкций.

Расчета толщины утеплителя

Надеемся вам хватило желания дочитать предыдущий раздел нашей статьи. Теперь попробуем рассчитать толщину утеплителя в зависимости от материала и толщины стен.

Каждый материал, входящий в многослойный пирог стены, обладает собственным тепловым сопротивлением R. Так вот, наша задача, состоит в том, чтобы сумма всех сопротивлений материалов, входящих в конструкцию стены, равнялась тепловому сопротивлению R ТР ,которое мы рассчитывали в предыдущейглаве, т.е.:

R ТР = R1 + R2 + R3 Rn, где n количество слоев.

Тепловое сопротивление отдельного материала R равняется отношению толщины слоя (δs) к теплопроводности (λS).

R = δSS

Что бы дальше не путать вас формулами, рассмотрим три примера.

Примеры расчета толщины утеплителя для стен из кирпича и газобетона

Для дальнейшего нахождения толщины утеплителя, нам понадобятся значения теплопроводности материалов λS. Эти данные должны присутствовать в сертификате к материалам.

Если по каким-либо причинам их нет, то посмотреть их можно в Приложение С к СП 50.13330.2012, который мы использовали ранее.

λ = 0,14 Вт/м* 0 С — теплопроводность газобетона;

λ = 0,045 Вт/м* 0 С – теплопроводность утеплителя;

λ = 0,52 Вт/м* 0 С – теплопроводность кирпича.

Далее вычисляем значение R для каждого материала, зная, что толщина слоя газобетона δ = 30 см, а наружная кладка в полкирпича равняется δ = 12 см.

RГ = δ = 0,3/0,14 = 2,14 м 2 * 0 С/Вт — тепловое сопротивление газобетона;

RК = δ = 0,12/0,52 = 0,23 м 2 * 0 С/В — тепловое сопротивление кирпича.

Т.к. наша стена состоит из трех слоев, то верно будет уравнение:

В предидущей главе мы находили значение R ТР (22 0 С) для г. Казань. Используем его для наших вычислений.

RУ = 3,45 — 2,14 – 0,23 = 1,08 м 2 * 0 С/Вт.

Таким образом мы нашли, каким тепловым сопротивлением должен обладать утеплитель. Для нахождения толщины утеплителя воспользуемся формулой:

Мы получили, что для заданных условий достаточно утеплителя толщиной 5 см.

Если мы возьмём значение R ТР (18 0 С) = 3,15 м 2 * 0 С/Вт, то получим:

RУ = 3,15 — 2,14 – 0,23 = 0,78 м 2 * 0 С/Вт.

Как видите, толщина утеплителя изменилась всего на полтора сантиметра.

По аналогии с предыдущими вычислениями находим значения теплопроводности по таблице:

λSК1 = 0,87 Вт/м* 0 С — теплопроводность силикатного кирпича плотностью 1800 кг/м 3 ;

λ = 0,045 Вт/м* 0 С – теплопроводность утеплителя;

λSК2 = 0,52 Вт/м* 0 С – теплопроводность кирпича плотностью 1000 кг/м 3 .

Далее находим значения R:

RК1 = δSК1SК1 = 0,38/0,87 = 0,44 м 2 * 0 С/Вт — тепловое сопротивление кирпича 1800 кг/м 3 ;

RК2 = δSК2SК2 = 0,12/0,52 = 0,23 м 2 * 0 С/В — тепловое сопротивление кирпича 1000 кг/м 3 .

Находим тепловое сопротивление утеплителя:

RУ = 3,45 – 0,44 – 0,23 = 2,78 м 2 * 0 С/Вт.

Теперь вычисляем толщину утеплителя:

Т.е. для данных условий достаточно толщины утеплителя 12 см.

Пример 3. В качестве наглядного примера, говорящем о важности утепления, рассмотрим стену состоящую только газобетона D600.

Зная теплопроводность газобетонных блоков, λ = 0,14 Вт/м* 0 С, можем сразу вычислить необходимую толщину стен т.к. стена однородна.

δS = R ТР х λ = 3,45 х 0,14 = 0,5 м

Мы получаем, чтобы соблюдать все нормы СНиП, мы должны выложить стену толщиной 0,5 м.

В таком случае можно пойти двумя путями, сделать стену сразу необходимой толщины или построить стену потоньше и дополнительно утеплить.

Первый вариант нам кажется более надежным и менее затратным, потому что работ по монтажу утеплителя нет. Второй вариант больше подходит для уже построенных домов.

Все эти примеры, показывают, как зависит толщина утепление от материала стен. По аналогии с ними вы можете проделать расчёты для любого типа материала.

ТРЕБУЕМЫЙ УРОВЕНЬ ТЕПЛОЗАЩИТЫ ЖИЛОГО ДОМА ДЛЯ МОСКОВСКОЙ ОБЛАСТИ

Рассмотрим выбор уровня теплозащиты наружных стен загородного жилого дома, например: двухэтажного, площадью 250 м 2 , для условий Московской области. Если произвести соответствующие расчеты по СП «Тепловая защита зданий» и воспользоваться его нормативными данными, то выполнение требований СП возможно при следующих значениях регламентируемых параметров:

  • по 1 варианту : R о ≥ 1,5 м 2 · о С/Вт, а q n = 105 кДж/(м 2 · о С·сут). Это значит, что при значении сопротивления теплопередаче ограждающих конструкций дома равном или большем 1,5 м 2 · о С/Вт, при температуре на внутренних поверхностях зон теплопроводных включений выше температуры точки росы и при значении удельного расхода тепловой энергии равном или меньшем 105 кДж/(м 2 · о С·сут), рассматриваемый дом будет соответствовать нормативным требованиям по теплозащите (темно зеленая зона на графике);
  • по 2 варианту : R о ≥ 3,16 м 2 · о С/Вт. Это значит, что при значении сопротивления теплопередаче ограждающих конструкций дома равном или большем 3,16 м 2 · о С/Вт и при температуре на внутренних поверхностях зон теплопроводных включений выше температуры точки росы , дом будет также соответствовать нормативным требованиям по теплозащите (светло зеленая зона на графике).

Понятно, что на практике чаще применяются решения, обеспечивающие выполнение условий по 1 варианту расчета, т.к. по нему требуется небольшое R о , а значит и меньшая толщина (стоимость) утеплителя, чем при расчете по 2 варианту. Но, в случае 1 варианта, часто встает вопрос, каким же образом, кроме высоких значений R о , обеспечить q n = 105 кДж/(м 2 · о С·сут), если даже сам СП по 1 варианту не требует высоких значений R о ? Чтобы ответить на этот вопрос, нужно найти другие способы (кроме утолщения утеплителя) понижения теплопотерь здания и выполнения условия q ф ≤ q n . Для этого рассмотрим основные пути теплопотерь дома:

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Читать еще:  Крепеж для утеплителя к деревянной стене

Расчет толщины утеплителя

Узнать требуемую толщину утепления можно самостоятельно выполнив небольшой расчет. Необходимо воспользоваться табличными данными и сведениями из СНиП, которые приведены ниже.

Очень важно знать какая толщина утепления необходима. Если ее сделать недостаточной, то не будет максимального эффекта от утепления, в результате большой ущерб. При долгой эксплуатации недоутепленного здания будут потеряны весьма значительные денежные средства. Но и перерасход утеплителя снижает экономическую целесообразность.

Оптимальное сопротивление теплопередаче стены (ограждающей конструкции) прописано в СНиП. Нам нужно утеплить стену так, чтобы достичь нормативного теплового сопротивления или немного превысить его.

Расчет толщины утепления в одно действие

Можно посчитать толщину утепления приблизительно одним действием, но обычно и этого достаточно, чтобы не промахнуться с выбором утеплителя и его толщины. Так как утеплять будем все равно плитами стандартной толщины и подберем их по ближайшему наибольшему значению.

К примеру нам нужно утеплить железобетонную стену квартиры в регионе Москва. Сопротивление теплопередаче стены для региона Москва должно составлять примерно 3,15м? •°С/Вт, (принято 5200 градусо-суток отопительного периода) (можно воспользоваться таблицей данных для разных городов в конце страницы).

Сопротивлением теплопередаче собственно ж/б стены пренебрегаем как несущественным.

Тогда толщина утеплителя пенопласта ПСБ25 составит ?=R• ?•0,9, где

R — требуемое сопротивление теплопередаче;
? — коэффициент теплопроводности материала, Вт/(м•°С), табличная величина;
0,9 — здесь — «коэффициент грубости расчета» — учитывает стену и некоторые другие параметры.
? = 3,15х0,038х0,9=0,107 м, принимаем толщину утеплителя пенопласт — 10 см одним листом.

Определение толщины утеплителя с учетом конструкций

Еще один пример, как узнать сколько утеплителя нужно, также не совсем точный, но приемлемый для применения на практике расчет.
Утепляем стену из полнотелого силикатного кирпича толщиной 0,38 м в Астрахани.

Требуемое сопротивление теплопередаче этой стены — 2,64 м? •°С/Вт
Собственное сопротивление теплопередачи стены составит
Rст.= ? ? ? =0,38/0,7=0,54м? •°С/Вт

Тогда для достижения нормативного значения нам не будет хватать 2,5 — 0,54=1,96м? •°С/Вт. Т.е сопротивление теплопередаче слоя утеплителя пенопласт СПБ 25 должно быть 1,96м? •°С/Вт.
Необходимая толщина пенопласта ?= 1,96х0,038=0,074м.

Промышленность может нас порадовать пенопластом ПСБ25 ближайшей большей толщиной 8 см. Его и будем применять.

Проверка выбора утепления по паропроницаемости

При выборе утеплителя для стены нельзя ошибиться в одном — наружный слой (утеплитель) должен быть более паропрозрачный чем стена. Если условие не выполняется, то нужно заменить утеплитель с меньшим сопротивлением движению пара.

Проверяем, подходит ли выбранный пенопласт толщиной 8 см для кирпичной стены по условиям пароизоляции.

Паропроницаемость слоя определяется делением его толщины на коэффициент паропроницаемости (данные в конце страницы).

Для стены – 0,38/0,11=3,45 м2 • ч • Па/мг.
Для пенопласта – 0,08/0,05=1,6 м2 • ч • Па/мг.
Условие выполняется.

Примечание: Обычно строительные материалы с высокой паропрозрачностью, такие как поризованая керамика, дерево, можно утеплять только лишь ватными материалами с весьма большим коэффициентом паропрозрачности (больше 0,2 мг/(м*ч*Па).

Уточняющие расчеты при выборе утепления

Рассчитаем толщину утеплителя для северо-восточной стены баньки где-нибудь на южном Урале.

Требуемое согласно норматива сопротивление теплопередаче для всей стены — 3,5 м? •°С/Вт.

Сопротивление теплопередаче самой конструкции должно быть:
R=Rо-Rв-Rн=3,5-0,115-0,043=3,342 м? •°С/Вт;

где
Rо-нормативное значение сопротивления теплопередаче= 3,5 м? •°С/Вт;
Rв — сопротивление при переходе тепловой энергии от внутреннего воздуха к внутренней поверхности ограждения, Rв=0,115 м? •°С/Вт (сопротивление тепловосприятию);
Rн — сопротивление при переходе тепловой энергии от наружной поверхности ограждения к наружному воздуху, Rн=0,043 м? •°С/Вт (сопротивление теплоотдаче);

  • Несущая стена — деревянный брус, ель, толщиной 0,2 м.ъ
  • Внутренняя пароизоляция и утепление стены — вспененный фольгированный полиэтилен, обращенный фольгой вовнутрь, толщиной 0,005 м.
  • Вентиляционный зазор между внутренней обшивкой из шпунтованной доски и пароизоляцией толщиной 0,02м (замкнутая воздушная прослойка с конвекционным движением воздуха).
  • Внутренняя обшивка из шпунтованной доски, сосна, ель, толщиной 0,02 м.

Выбранный утеплитель, с учетом рекомендаций по паропроницаемости слоев, минеральная вата, плитная под сайдингом.
Ее коэффициент теплопроводности в условиях эксплуатации под диффузионной мембраной с наружным вентиляционым зазором с учетом увеличения теплопроводности на 20% — 0,045Вт/(м•°С).

Сопротивление теплопередаче имеющейся конструкции стены определяется как сумма сопротивления каждого слоя
Rк=R1+R2+R3+R5=1,176+0,161+0,117+0,28 = 1,734 м? •°С/Вт,

где
R1 — сопротивление теплопередаче несущей стены.
R1=0,2/0,17=1,176м? •°С/Вт,

Здесь толщина бревна ?=0,2м,
коэффициент теплопроводности сосны и ели поперек волокон ?=0,17 Вт/(м•°С).

Далее:
R2=0,005/0,031=0,161 м? •°С/Вт, сопротивление теплопередаче фольгированного вспененного полиэтилена;
R3=0,02/0,17=0,117 м? •°С/Вт, — сопротивление теплопередаче внутренней деревянной обшивки.
R4=0,14м? •°С/Вт х 2=0,28м? •°С/Вт — сопротивление вентиляционного зазора
между отделкой и пароизоляцией, принимается 0,14 для толщины зазора 0,02 м и с коэффициентом 2, так как имеется отражение лучевой энергии фольгой.

Сопротивление теплопередаче самого утеплителя должно быть
Rут=R-Rк=3,342 — 1,734= 1,608м? •°С/Вт,

Расчетная толщина утеплителя минеральная вата
? расч. =1,608х0,045 = 0,072 м.

С учетом того, что стена располагается с северовосточной стороны, уточняем толщину утеплителя — к полученному значению расчетной толщины добавляется поправочное значение ? расч.х0,1,

? утепл. = 0.072+ 0,072х0,1= 0,079 м.

Мы узнали толщину утепления для бани (согласно СП 23-101-2004″Проектирование тепловой защиты зданий»), расположенной в относительно прохладном районе. Сама же баня, на первый взгляд с достаточно теплыми стенами, но расчет показал, что необходимо дополнительное утепление, для чего применяется минеральная вата толщиной 8 см.

Данные СНиП о сопротивлении теплопередаче ограждающих конструкций

Требуемое сопротивление теплопередаче для стен жилых зданий в городах и областях России

Внимание, что бы узнать приблизительное значение:

  • для потолочных перекрытий и крыш, перекрытий над проездами и другими не огражденными участками (на сваях..), необходимо данные умножить на 1,5;
  • для перекрытий над подвалами, неотапливаемыми подпольями, полов по грунту – данные умножить на 1,3[/i]

Значение паропроницаемости для различных строительных материалов

Типовые конструкции стен

Разберем варианты из различных материалов и различных вариаций «пирога», но для начала, стоит упомянуть самый дорогой и сегодня крайне редко встречаемый вариант — стена из цельного кирпича. Для Тюмени толщина стены должна быть 770 мм или три кирпича.

В противовес, достаточно популярный вариант — брус 200 мм. Из схемы и из таблицы ниже становится очевидно, что одного бруса для жилого дома недостаточно. Остается открытым вопрос, достаточно ли утеплить наружные стены одним листом минеральной ваты толщиной 50 мм?

Название материалаШирина, мλ1, Вт/(м × °С)R1, м 2 ×°С/Вт
Вагонка из хвойных пород0,010,150,01 / 0,15 = 0,066
Воздух0,02
Эковер Стандарт 500,050,040,05 / 0,04 = 1,25
Брус сосновый0,20,150,2 / 0,15 = 1,333

Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,08 м = 80 мм.

Отсюда следует что утепления в один слой 50 мм минеральной ваты недостаточно, нужно утеплять в два слоя с перехлестом.

Любителям рубленных, цилиндрованных, клееных и прочих видов деревянных домов. Можете подставить в расчет любую, доступную вам, толщину деревянных стен и убедиться, что без внешнего утепления в холодные периоды вы: либо будете мерзнуть при равных расходах тепловой энергии, либо тратить больше на отопление. К сожалению, чудес не бывает.

Так же стоит отметить несовершенство стыков между бревнами, что неизбежно ведет к теплопотерям. На снимке тепловизора угол дома снятый изнутри.

Керамзитоблок

Следующий вариант так же набрал популярность в последнее время, керамзитоблок 400 мм с облицовкой кирпичом. Выясним какой толщины утеплитель нужен в этом варианте.

Название материалаШирина, м
Кирпич0,120,870,12 / 0,87 = 0,138
Воздух0,02
Эковер Стандарт 500,050,040,05 / 0,04 = 1,25
Керамзитоблок0,40,450,4 / 0,45 = 0,889

Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,094 м = 94 мм.

Для кладки из керамзитоблока с облицовкой кирпичом требуется минеральный утеплитель толщиной 100 мм.

Газоблок

Газоблок 400 мм с нанесением утеплителя и оштукатуриванием по технологии «мокрый фасад». Величину внешней штукатурки в расчет не включаем из-за крайней малости слоя. Так же, в силу правильной геометрии блоков сократим слой внутренней штукатурки до 1 см.

Название материалаШирина, м
Эковер Стандарт 500,050,040,05 / 0,04 = 1,25
Поревит БП-400 (D500)0,40,120,4 / 0,12 = 3,3
Штукатурка0,010,870,01 / 0,87 = 0,012

Подставляя в предыдущие формулы, получаем требуемую толщину утеплителя δут = 0,003 м = 3 мм.

Здесь напрашивается вывод: блок Поревит толщиной 400 мм не требует утеплителя с внешней стороны, достаточно внешней и внутренней штукатурки или отделки фасадными панелями.

Несмотря на то, что мы получили для газобетона минимальную толщину утеплителя, это вовсе не значит что он не нужен — обязательно нужен.

Читать еще:  Ширина утеплителя для стен каркасного дома

Если объяснить это коротко, то коэффициенты теплороводности λ всех материалов указываются для идеальных условий: постоянная температура и влажность. В жизни же газобетон увлажняется из-за разности температур внутри и снаружи дома, при этом значительно теряет свои характеристики теплопроводности.

Толщина стен в частных домах (постоянного проживания)

В этом случае необходимо руководствоваться требованиями, предъявляемыми к тепловой защите, указанными в СНиПе 23-02-2003.
Обратите внимание! Указанные в СНиПе нормы можно изменять в зависимости от климатических особенностей местности.
Под этим подразумевается, что толщина стен из газобетона в средней полосе России и крайнем севере будет различна, поскольку различаются климатические условия. То есть для мягкого климата, где температура зимой редко опускается ниже 0°С, нормы могут быть пересмотрены в меньшую сторону.

Относительная ошибка метода расчета требуемой толщины теплоизоляции трубопроводов по нормам плотности теплового потока

А. С. Горшков, директор учебно-научного центра «Мониторинг и реабилитация природных систем» ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого», главный специалист АО «Газпром промгаз»

М. Н. Ефименко, технический директор ООО «АлгоритмСтрой»

В статье представлен пример расчета требуемой толщины тепловой изоляции трубопровода, расположенного на открытом воздухе. Выполнена оценка относительной погрешности описанного в своде правил СП 61.13330 метода расчета требуемой толщины тепловой изоляции по нормам плотности теплового потока. Показано, что относительная ошибка рассматриваемого метода расчета не превышает 3,5%.

Ключевые слова: трубопровод, теплоноситель, температура, тепловая изоляция, теплопроводность, тепловой поток.

При проектировании тепловой изоляции трубопроводов и оборудования расчет толщины теплоизоляционного слоя осуществляется на основании следующих требований Свода правил СП 61.13330 [1]:

— по нормам плотности теплового потока через изолированную поверхность;

— по заданной величине теплового потока;

— по заданной величине охлаждения (нагревания) вещества, сохраняемого в емкостях в течение определенного времени;

— по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами (паропроводами);

— по заданному количеству конденсата на паропроводах;

— по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания;

— по заданной температуре на поверхности изоляции;

— с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха.

Основным из представленного выше перечня требований является первое — по нормированной плотности теплового потока. Методика расчета толщины изоляции в соответствии с указанным требованием представлена в Приложении В [1].

В соответствии с предлагаемой методикой толщина теплоизоляционного слоя должна обеспечить нормы плотности теплового потока, численные значения которых, в зависимости от диаметра трубопровода и температуры теплоносителя, приведены в таблицах 2–12 [1]. При этом в расчете вводится ряд допущений, которые вносят погрешность. Целью настоящего исследования является оценка относительной ошибки предлагаемого метода расчета.

Пример расчета

Рассмотрим реализацию указанного в [1] алгоритма расчета на примере проектной задачи со следующими исходными данными:

— диаметр трубопровода —= 0,133 м;

— температура теплоносителя — = 100 °С;

— трубопровод размещается на открытом воздухе на территории Ленинградской области со средней за год температурой наружного воздуха = 5,4 °С (в соответствии с данными, приведенными в [2]);

— коэффициент теплоотдачи наружной поверхности теплоизолированной трубы () принимается равным 26 Вт/(м 2 ∙К) в соответствии с таблицей В.2 [1], так как при отсутствии данных по скорости ветра значение коэффициента теплоотдачи принимается соответствующим скорости ветра 10 м/сек;

— коэффициент, учитывающий дополнительные потери тепла через опоры, а также крепеж трубопроводов в соответствии с примечанием к формуле (В.19) [1] принимается равным 1.

Далее, в соответствии с методом расчета, принятым в [1], вводится допущение о том, что среднее значение температуры теплоизоляционного слоя – для рассматриваемого примера принимается равным половине температуры теплоносителя (см. примечание 1 к таблице Б.1 [1]). Введение данного допущения позволяет в последующих расчетах рассматривать величину теплопроводности теплоизоляционного слоя в качестве постоянной величины. В действительности это допущение редко соответствует реальным условиям эксплуатации.

Зависимость теплопроводности рассматриваемого теплоизоляционного материала от температуры приведена в таблице 1.

Таблица 1. Теплопроводность теплоизоляционного слоя [3]

Средняя температура изоляции, °СТеплопроводность λ, Вт/(м∙К)
100,039
250,040
500,043
1000,054
1250,071
1500,075

Данные, представленные в таблице 1, графически показаны на рис. 1.

Рис. 1. Зависимость теплопроводности тепловой изоляции от температуры

Известно, что значение средней температуры теплоизоляционного материала можно определить, если известны значения температур в прилегающем к трубе слое (в первом приближении эту температуру можно принять равной температуре теплоносителя, так как тепловым сопротивлением стенок металлической трубы можно пренебречь), а также значение температуры наружного слоя теплоизоляционного покрытия. Для рассматриваемого примера:

В соответствии с данными, приведенными в таблице 1, для указанной температуры значение теплопроводности изоляции составляет 0,043 Вт/(м∙К).

На основании данных, представленных в таблице 2 [1], рассчитаем для рассматриваемого примера норму плотности теплового потока через поверхность изоляции. Используя метод интерполяции, получим:

Таким образом, имеем все исходные данные для расчета требуемой толщины тепловой изоляции по методике Приложения В [1] с учетом принятого ранее допущения. Для расчета требуемой толщины слоя тепловой изоляции воспользуемся формулой (В.19) [1]:

— сопротивление теплоотдаче от наружной поверхности цилиндрической теплоизоляционной конструкции к окружающему воздуху, м 2 ·К/Вт.

Перепишем уравнение (1) так, чтобы в нем фигурировало неизвестное значение толщины теплоизоляционного слоя :

Так как в левой и правой части данного нелинейного уравнения присутствует неизвестная, то найти ее в явном виде не представляется возможным и уравнение решается методом последовательных приближений. Для реализации данного метода преобразуем уравнение (2) следующим образом:

Далее для реализации метода последовательных приближений необходимо ввести какое-либо начальное значение толщины в правую часть уравнения (3) и получить уточненное значение этой же величины, стоящей справа. Итерации продолжаются до тех пор, пока расчетное значение в левой части не перестанет изменяться, то есть выполнится условие равенства левой и правой частей уравнения. Реализация указанного алгоритма для приведенных выше исходных данных дает значение толщины слоя тепловой изоляции = 59 мм.

Рассчитаем температуру на поверхности теплоизоляционного слоя . Для определения температуры наружной поверхности теплоизоляционного слоя воспользуемся следующим уравнением теплового баланса:

Выразим из уравнения (4) tп:

Подставив в уравнение (5) исходные данные, получим: tп= 7,3 °C. При данной температуре на поверхности теплоизоляционного слоя средняя температура в слое тепловой изоляции составит:

т. е. выше принятой в первоначальном допущении. Изменение средней температуры в слое изоляции приводит к изменению теплопроводности теплоизоляционного материала. С учетом этого необходимо все пересчитывать заново, начиная с определения и последующего значения и делать это до тех пор, пока заданное значение температуры на поверхности теплоизоляционного слоя и расчетное не сравняются, то есть совместно будут выполнены два равенства в уравнениях (3) и (5).

Таким образом, для корректного определения толщины теплоизоляции необходимо решать не одно уравнение, а систему уравнений с двумя неизвестными:

Для принятых исходных данных решение системы уравнений (6) дает следующие результаты:

Итак, при решении одного уравнения получен результат 59 мм, а при корректном решении системы из двух уравнений с двумя неизвестными — 61 мм. Относительная ошибка метода расчета толщины теплоизоляционного слоя, приведенного в СП 61.13330, составляет:

что является вполне удовлетворительным результатом для инженерного метода расчета.

С учетом допущений, описанных в п. 6.12 [1], можно считать, что для рассматриваемого примера влияние принятого допущения не сказывается на расчетной толщине теплоизоляционного слоя.

  1. Для уплотняющихся при монтаже теплоизоляционных материалов окончательное значение толщины тепловой изоляции оборудования и трубопроводов должно быть рассчитано с учетом коэффициента монтажного уплотнения. Пример расчета представлен в работе [3].
  2. В рамках настоящего исследования единицы теплофизических величин (теплопроводности, термического сопротивления) приняты в соответствии с ГОСТ 8.417 [4].

Для упрощения процедуры расчетов в нормативной документации часто приходится вводить некоторые допущения. При расчете требуемой толщины изоляции трубопроводов в Своде правил СП 61.13330 вводится ряд допущений о средней температуре в слое тепловой изоляции. В рамках выполненного исследования проведена оценка относительной погрешности метода расчета, представленного в СП 61.13330. Показано, что погрешность не превышает 3,5%, что для инженерного метода расчета является вполне удовлетворительным результатом.

Литература

  1. Свод правил СП 61.13330.2012. Актуализированная редакция СНиП 41-03-2003. Тепловая изоляция оборудования и трубопроводов.
  2. Свод правил СП 131.13330.2012. Актуализированная редакция СНиП 23-01-99*. Строительная климатология.
  3. Рекомендации по применению минераловатных изделий на основе стекловолокна производства ООО «КНАУФ Инсулейшн» для тепловой изоляции оборудования и трубопроводов с альбомом технических решений. СПб.: Санкт-Петербургский политехнический университет Петра Великого. — 2017. — 76 с.
  4. ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector